TY - JOUR T1 - A New Estimate for Bochner-Riesz Operators at the Critical Index on Weighted Hardy Spaces AU - Hua Wang , JO - Analysis in Theory and Applications VL - 3 SP - 221 EP - 233 PY - 2013 DA - 2013/07 SN - 29 DO - http://doi.org/10.4208/ata.2013.v29.n3.3 UR - https://global-sci.org/intro/article_detail/ata/5059.html KW - Bochner-Riesz operator, weighted Hardy space, weighted weak Hardy space, $A_p$ weight, atomic decomposition. AB -
Let $w$ be a Muckenhoupt weight and $H^p_w(\mathbb R^n)$ be the weighted Hardy space. In this paper, by using the atomic decomposition of $H^p_w(\mathbb R^n)$, we will show that the Bochner-Riesz operators $T^\delta_R$ are bounded from $H^p_w(\mathbb R^n)$ to the weighted weak Hardy spaces $WH^p_w(\mathbb R^n)$ for $0 < p < 1$ and $\delta=n/p-(n+1)/2$. This result is new even in the unweighted case.