TY - JOUR T1 - Almost Homomorphisms Between Unital $C^*$-Algebras: A Fixed Point Approach AU - M. Eshaghi Gordji, S. Kaboli Gharetapeh, M. Bidkham, T. Karimi & M. Aghaei JO - Analysis in Theory and Applications VL - 4 SP - 320 EP - 331 PY - 2011 DA - 2011/11 SN - 27 DO - http://doi.org/10.1007/s10496-011-0320-3 UR - https://global-sci.org/intro/article_detail/ata/4604.html KW - alternative fixed point, Jordan $*$-homomorphism. AB -
Let $A$, $B$ be two unital $C^*$−algebras. By using fixed point methods, we prove that every almost unital almost linear mapping $h : A \to B$ which satisfies $h(2^nuy)= h(2^nu)h(y)$ for all $u \in U(A)$, all $y \in A$, and all $n=0,1,2, \cdots$, is a homomorphism. Also, we establish the generalized Hyers–Ulam–Rassias stability of $*$−homomorphisms on unital $C^*$−algebras.