TY - JOUR T1 - Convergence of Derivatives of Generalized Bernstein Operators AU - L. Y. Zhu , AU - Qiu , L. JO - Analysis in Theory and Applications VL - 2 SP - 135 EP - 145 PY - 2012 DA - 2012/06 SN - 28 DO - http://doi.org/10.3969/j.issn.1672-4070.2012.02.004 UR - https://global-sci.org/intro/article_detail/ata/4550.html KW - limit $q$-Bernstein operators, derivative of $q$-Bernstein polynomial, convergence, rate. AB -
In the present paper, we obtain estimations of convergence rate derivatives of the $q$-Bernstein polynomials $B_n(f,q_n;x)$ approximating to $f'(x)$ as $n\to\infty$ which is a generalization of that relating the classical case $q_n = 1$. On the other hand, we study the convergence properties of derivatives of the limit $q$-Bernstein operators $B_\infty( f,q;x)$ as $q\to 1^−.$