TY - JOUR T1 - The Boundedness of the Commutator for Riesz Potential Associated with Schrödinger Operator on Morrey Spaces AU - Dongxiang Chen , AU - Liang Song , JO - Analysis in Theory and Applications VL - 4 SP - 363 EP - 368 PY - 2014 DA - 2014/11 SN - 30 DO - http://doi.org/10.4208/ata.2014.v30.n4.3 UR - https://global-sci.org/intro/article_detail/ata/4500.html KW - Reverse Hölder class, commutator, Schrödinger operator. AB -
Let $\mathcal{L}=-\Delta+V$ be the Schrödinger operator on $\mathbb{R}^d$, where $\Delta$ is the Laplacian on $\mathbb{R}^{d}$ and $V\ne0$ is a nonnegative function satisfying the reverse Hölder's inequality. The authors prove that Riesz potential $\mathcal{J}_{\beta}$ and its commutator $[b,\mathcal{J}_{\beta}]$ associated with $\mathcal{L}$ map from $M_{\alpha,v}^{p,q}$ into $M_{\alpha,v}^{p_1,q_1}$.