TY - JOUR T1 - A Posteriori Error Estimates of Finite Volume Element Method for Second-Order Quasilinear Elliptic Problems AU - C.-J. Bi & C. Wang JO - International Journal of Numerical Analysis and Modeling VL - 1 SP - 22 EP - 40 PY - 2016 DA - 2016/01 SN - 13 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/424.html KW - quasilinear elliptic problem, finite volume element method, a posteriori error estimates. AB -

In this paper, we consider the a posteriori error estimates of the finite volume element method for the general second-order quasilinear elliptic problems over a convex polygonal domain in the plane, propose a residual-based error estimator and derive the global upper and local lower bounds on the approximation error in the $H^1$-norm. Moreover, for some special quasilinear elliptic problems, we propose a residual-based a posteriori error estimator and derive the global upper bound on the error in the $L^2$-norm. Numerical experiments are also provided to verify our theoretical results.