TY - JOUR T1 - Carleson Measure Associated with the Fractional Heat Semigroup of Schrödinger Operator AU - Huang , Jizheng AU - Ying , Shuangshuang JO - Communications in Mathematical Research VL - 2 SP - 191 EP - 213 PY - 2024 DA - 2024/05 SN - 40 DO - http://doi.org/10.4208/cmr.2024-0001 UR - https://global-sci.org/intro/article_detail/cmr/23087.html KW - Schrödinger operator, reverse Hölder class, Carleson measure, fractional heat semigroup, Campanato spaces. AB -
Let $L=−∆+V$ be a Schrödinger operator, where $∆$ is the Laplacian on $\mathbb{R}^d$ and the nonnegative potential $V$ belongs to the reverse Hölder class $B_{d/2}.$ In this paper, we define a new version of Carleson measure associated with the fractional heat semigroup of Schrödinger operator $L.$ We will characterize the Campanato spaces and the predual spaces of the Hardy spaces by the new Carleson measure.