TY - JOUR T1 - Error Analysis of the Nonconforming $P_1$ Finite Element Method to the Sequential Regularization Formulation for Unsteady Navier-Stokes Equations AU - Lai , Yanming AU - Liang , Kewei AU - Lin , Ping AU - Lu , Xiliang AU - Quan , Qimeng JO - Annals of Applied Mathematics VL - 1 SP - 43 EP - 70 PY - 2024 DA - 2024/02 SN - 40 DO - http://doi.org/10.4208/aam.OA-2023-0016 UR - https://global-sci.org/intro/article_detail/aam/22927.html KW - Navier-Stokes equations, error estimates, finite element method, stabilization method. AB -
In this paper we investigate the nonconforming $P_1$ finite element approximation to the sequential regularization method for unsteady Navier-Stokes equations. We provide error estimates for a full discretization scheme. Typically, conforming $P_1$ finite element methods lead to error bounds that depend inversely on the penalty parameter $\epsilon.$ We obtain an $\epsilon$-uniform error bound by utilizing the nonconforming $P_1$ finite element method in this paper. Numerical examples are given to verify theoretical results.