TY - JOUR T1 - A New Fixed-Time Dynamical System for Absolute Value Equations AU - Li , Xuehua AU - Yu , Dongmei AU - Yang , Yinong AU - Han , Deren AU - Chen , Cairong JO - Numerical Mathematics: Theory, Methods and Applications VL - 3 SP - 622 EP - 633 PY - 2023 DA - 2023/08 SN - 16 DO - http://doi.org/10.4208/nmtma.OA-2022-0148 UR - https://global-sci.org/intro/article_detail/nmtma/21960.html KW - Absolute value equation, fixed-time convergence, dynamical system, numerical simulation. AB -
A novel dynamical model with fixed-time convergence is presented to solve the system of absolute value equations (AVEs). Under a mild condition, it is proved that the solution of the proposed dynamical system converges to the solution of the AVEs. Moreover, in contrast to the existing inversion-free dynamical system (C. Chen et al., Appl. Numer. Math. 168 (2021), 170–181), a conservative settling-time of the proposed method is given. Numerical simulations illustrate the effectiveness of the new method.