TY - JOUR T1 - Hilbert-Schmidtness of Submodules in $H^2 (\mathbb{D}^2 )$ Containing $θ(z)−\varphi (w)$ AU - Zu , Chao AU - Yang , Yixin AU - Lu , Yufeng JO - Communications in Mathematical Research VL - 3 SP - 331 EP - 341 PY - 2023 DA - 2023/04 SN - 39 DO - http://doi.org/10.4208/cmr.2022-0034 UR - https://global-sci.org/intro/article_detail/cmr/21606.html KW - Hardy space over the bidisk, Hilbert-Schmidt submodule, fringe operator, Fredholm index. AB -
A closed subspace $M$ of the Hardy space $H^2(\mathbb{D}^2)$ over the bidisk is called submodule if it is invariant under multiplication by coordinate functions $z$ and $w.$ Whether every finitely generated submodule is Hilbert-Schmidt is an unsolved problem. This paper proves that every finitely generated submodule $M$ containing $θ(z)−\varphi(w)$ is Hilbert-Schmidt, where $θ(z),$ $\varphi(w)$ are two finite Blaschke products.