TY - JOUR T1 - On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$ AU - Dai , Shaoyu AU - Liu , Yang AU - Pan , Yifei JO - Analysis in Theory and Applications VL - 1 SP - 83 EP - 92 PY - 2023 DA - 2023/03 SN - 39 DO - http://doi.org/10.4208/ata.OA-2021-0027 UR - https://global-sci.org/intro/article_detail/ata/21463.html KW - Laplace operator, polynomial, right inverse, weighted Hilbert space, Gaussian measure. AB -
Let $P(∆)$ be a polynomial of the Laplace operator $$∆ = \sum\limits^n_{j=1}\frac{∂^2}{∂x^2_j} \ \ on \ \ \mathbb{R}^n.$$ We prove the existence of a bounded right inverse of the differential operator $P(∆)$ in the weighted Hilbert space with the Gaussian measure, i.e., $L^2(\mathbb{R}^n ,e^{−|x|^2}).$