TY - JOUR T1 - Cycles Embedding on Folded Hypercubes with Faulty Nodes AU - Yuan , Dan AU - Liu , Hongmei AU - Tang , Maozheng JO - Annals of Applied Mathematics VL - 1 SP - 69 EP - 78 PY - 2022 DA - 2022/06 SN - 32 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/aam/20629.html KW - folded hypercube, interconnection network, fault-tolerant, path. AB -
Let $FF_v$ be the set of faulty nodes in an $n$-dimensional folded hypercube $FQ_n$ with $|FF_v| ≤ n − 1$ and all faulty vertices are not adjacent to the same vertex. In this paper, we show that if $n ≥ 4,$ then every edge of $FQ_n − F F_v$ lies on a fault-free cycle of every even length from 6 to $2^n − 2|F F_v|.$