TY - JOUR T1 - Contact Finite Determinacy of Relative Map Germs AU - Chen , Liang AU - Sun , Weizhi AU - Pei , Donghe JO - Communications in Mathematical Research VL - 1 SP - 1 EP - 6 PY - 2021 DA - 2021/05 SN - 26 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19172.html KW - $\mathcal{K}_{S,T}$ equivalent, the tangent space of an orbit, relative deformation, finite determined relative to $\mathcal{K}_{S,T}$ AB -
The strong contact finite determinacy of relative map germs is studied by means of classical singularity theory. We first give the definition of a strong relative contact equivalence (or $\mathcal{K}_{S,T}$ equivalence) and then prove two theorems which can be used to distinguish the contact finite determinacy of relative map germs, that is, $f$ is finite determined relative to $\mathcal{K}_{S,T}$ if and only if there exists a positive integer $k$, such that $\mathcal{M}^k (n)Ԑ(S; n)^p ⊂ T\mathcal{K}_{S,T}(f)$.