TY - JOUR T1 - Reducing Subspaces of Toeplitz Operators on $N_ϕ$-Type Quotient Modules on the Torus AU - Wu , Yan AU - Xu , Xianmin JO - Communications in Mathematical Research VL - 1 SP - 19 EP - 29 PY - 2021 DA - 2021/05 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19071.html KW - module, $N_ϕ$-type quotient module, the analytic Toeplitz operator, reducing subspace, finite Blaschke product AB -
In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol $S_{ψ(z)}$ on $N_ϕ$ has at least $m$ non-trivial minimal reducing subspaces, where $m$ is the dimension of $H^2(Γ_ω) ⊖ ϕ(ω)H^2 (Γ_ω)$. Moreover, the restriction of $S_{ψ(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift $M_z$.