TY - JOUR T1 - An Identity with Skew Derivations on Lie Ideals AU - Wang , Zhengping AU - Ur Nadeem , Rehman AU - Huang , Shuliang JO - Communications in Mathematical Research VL - 1 SP - 83 EP - 87 PY - 2021 DA - 2021/03 SN - 32 DO - http://doi.org/10.13447/j.1674-5647.2016.01.06 UR - https://global-sci.org/intro/article_detail/cmr/18665.html KW - skew derivation, generalized polynomial identity, Lie ideal, prime ring. AB -
Let $R$ be a 2-torsion free prime ring and $L$ a noncommutative Lie ideal of $R$. Suppose that $(d, σ)$ is a skew derivation of $R$ such that $x^s d(x)x^t = 0$ for all $x ∈ L$, where $s, t$ are fixed non-negative integers. Then $d = 0$.