TY - JOUR T1 - On Nonnegative Solution of Multi-Linear System with Strong $\mathcal{M}_z$-Tensors AU - Mo , Changxin AU - Wei , Yimin JO - Numerical Mathematics: Theory, Methods and Applications VL - 1 SP - 176 EP - 193 PY - 2020 DA - 2020/10 SN - 14 DO - http://doi.org/10.4208/nmtma.OA-2020-0080 UR - https://global-sci.org/intro/article_detail/nmtma/18331.html KW - $\mathcal{M}_z$-tensor, multi-linear system, nonnegative solution, $\mathcal{M}$-tensor, tensor equation, fixed point theory. AB -
A class of structured multi-linear system defined by strong $\mathcal{M}_z$-tensors is considered. We prove that the multi-linear system with strong $\mathcal{M}_z$-tensors always has a nonnegative solution under certain condition by the fixed point theory. We also prove that the zero solution is the only solution of the homogeneous multi-linear system for some structured tensors, such as strong $\mathcal{M}$-tensors, $\mathcal{H}^+$-tensors, strictly diagonally dominant tensors with positive diagonal elements. Numerical examples are presented to illustrate our theoretical results.