TY - JOUR T1 - Eigenvalues of a Differential Operator and Zeros of the Riemann $\zeta$-Function AU - Ge , Liming AU - Li , Xian-Jin AU - Wu , Dongsheng AU - Xue , Boqing JO - Analysis in Theory and Applications VL - 3 SP - 283 EP - 294 PY - 2020 DA - 2020/09 SN - 36 DO - http://doi.org/10.4208/ata.OA-SU1 UR - https://global-sci.org/intro/article_detail/ata/18287.html KW - Hilbert-Pόlya space, zeros of zeta function, differential operator, eigenvalue. AB -
The eigenvalues of a differential operator on a Hilbert-Pόlya space are determined. It is shown that these eigenvalues are exactly the nontrivial zeros of the Riemann $\zeta$-function. Moreover, their corresponding multiplicities are the same.