TY - JOUR T1 - Fractal Dimension of Random Attractors for Non-Autonomous Fractional Stochastic Reaction-Diffusion Equations AU - Shu , Ji AU - Bai , Qianqian AU - Huang , Xin AU - Zhang , Jian JO - Journal of Partial Differential Equations VL - 4 SP - 377 EP - 394 PY - 2020 DA - 2020/08 SN - 33 DO - http://doi.org/10.4208/jpde.v33.n4.4 UR - https://global-sci.org/intro/article_detail/jpde/17864.html KW - Random dynamical system, random attractor, fractal dimension, fractional reaction-diffusion equation, multiplicative noise. AB -
This paper deals with non-autonomous fractional stochastic reaction-diffusion equations driven by multiplicative noise with $s ∈ (0,1).$ We first present some conditions for estimating the boundedness of fractal dimension of a random invariant set. Then we establish the existence and uniqueness of tempered pullback random attractors. Finally, the finiteness of fractal dimension of the random attractors is proved.