TY - JOUR T1 - Multiple Axially Asymmetric Solutions to a Mean Field Equation on $\mathbb{S}^{2}$ AU - Du , Zhuoran AU - Gui , Changfeng AU - Jin , Jiaming AU - Li , Yuan JO - Analysis in Theory and Applications VL - 1 SP - 19 EP - 32 PY - 2020 DA - 2020/05 SN - 36 DO - http://doi.org/10.4208/ata.OA-0016 UR - https://global-sci.org/intro/article_detail/ata/16911.html KW - Mean field equation, axially asymmetric solutions, bifurcation. AB -
We study the following mean field equation
$$\Delta_{g}u+\rho\left(\frac{e^{u}}{\int_{\mathbb{S}^{2}}e^{u}d\mu}-\frac{1}{4\pi}\right)=0\ \ \mbox{in}\ \ \mathbb{S}^{2},$$
where $\rho$ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from $u=0$ at the values $\rho=4n(n+1)\pi$ for any odd integer $n\geq3$.