TY - JOUR T1 - An Equivalent Characterization of $CMO(\mathbb{R}^n)$ with $A_p$ Weights AU - Zhong , Minghui AU - Hou , Xianming JO - Journal of Mathematical Study VL - 1 SP - 1 EP - 11 PY - 2020 DA - 2020/03 SN - 53 DO - http://doi.org/10.4208/jms.v53n1.20.01 UR - https://global-sci.org/intro/article_detail/jms/15205.html KW - $BMO_{\omega}(\mathbb{R}^n)$, $CMO(\mathbb{R}^n)$, $A_p$, John-Nirenberg inequality. AB -
Let $1<p<\infty$ and $ω\in A_p$. The space $CMO(\mathbb{R}^n)$ is the closure in $BMO(\mathbb{R}^n)$ of the set of $C_c^{\infty}(\mathbb{R}^n)$. In this paper, an equivalent characterization of $CMO(\mathbb{R}^n)$ with $A_p$ weights is established.