TY - JOUR T1 - Weighted Norm Inequalities for Toeplitz Type Operator Related to Singular Integral Operator with Variable Kernel AU - He , Yuexiang JO - Analysis in Theory and Applications VL - 4 SP - 377 EP - 391 PY - 2020 DA - 2020/01 SN - 35 DO - http://doi.org/10.4208/ata.OA-2018-1012 UR - https://global-sci.org/intro/article_detail/ata/13618.html KW - Toeplitz type operator, variable Calderόn-Zygmund kernel, fractional integral, weighted Lipschitz space. AB -
Let $T^{k,1}$ be the singular integrals with variable Calderόn-Zygmund kernels or $\pm I$ (the identity operator), let $T^{k,2}$ and $T^{k,4}$ be the linear operators, and let $T^{k,3}=\pm I$. Denote the Toeplitz type operator by
$$T^b=\sum_{k=1}^t(T^{k,1}M^bI_\alpha T^{k,2}+T^{k,3}I_\alpha M^b T^{k,4}),$$
where $M^bf=bf,$ and $I_\alpha$ is the fractional integral operator. In this paper, we investigate the boundedness of the operator on weighted Lebesgue space when $b$ belongs to weighted Lipschitz space.