TY - JOUR T1 - The New Structure Theorem of Right-$e$ Wlpp Semigroups AU - Wang , Chunru AU - Ren , Xueming AU - Ma , Siyao JO - Communications in Mathematical Research VL - 3 SP - 274 EP - 280 PY - 2019 DA - 2019/11 SN - 33 DO - http://doi.org/10.13447/j.1674-5647.2017.03.07 UR - https://global-sci.org/intro/article_detail/cmr/13386.html KW - wlpp semigroup, right-$e$ wlpp semigroup, spined product AB -
Wlpp semigroups are generalizations of lpp semigroups and regular semigroups. In this paper, we consider some kinds of wlpp semigroups, namely right-$e$ wlpp semigroups. It is proved that such a semigroup $S$, if and only if $S$ is the strong semilattice of $\mathcal{L}$-right cancellative planks; also if and only if $S$ is a spined product of a right-$e$ wlpp semigroup and a left normal band.