TY - JOUR T1 - An Interface-Unfitted Finite Element Method for Elliptic Interface Optimal Control Problems AU - Chaochao Yang, Tao Wang & Xiaoping Xie JO - Numerical Mathematics: Theory, Methods and Applications VL - 3 SP - 727 EP - 749 PY - 2019 DA - 2019/04 SN - 12 DO - http://doi.org/10.4208/nmtma.OA-2018-0031 UR - https://global-sci.org/intro/article_detail/nmtma/13128.html KW - Interface equations, interface control, variational discretization concept, cut finite element method. AB -

This paper develops and analyses numerical approximation for linear-quadratic optimal control problems governed by elliptic interface equations. We adopt variational discretization concept to discretize optimal control problems, and apply an interface-unfitted finite element method due to [A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48): 5537-5552, 2002] to discretize the corresponding state and adjoint equations, where piecewise cut basis functions around interface are enriched into standard conforming finite element space. Optimal error estimates in both $L$2 norm and a mesh-dependent norm are derived for the optimal state, co-state and control under different regularity assumptions. Numerical results verify the theoretical results.