TY - JOUR T1 - On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem AU - Cheng , Jinfa JO - Journal of Mathematical Study VL - 1 SP - 38 EP - 52 PY - 2019 DA - 2019/03 SN - 52 DO - http://doi.org/10.4208/jms.v52n1.19.04 UR - https://global-sci.org/intro/article_detail/jms/13047.html KW - Sequential Caputo fractional derivative, generalized Taylor's mean value theorem, generalized Taylor's formula, generalized Cauchy' mean value theorem, generalized Cauchy's formula. AB -
In this paper, a generalized multivariate fractional Taylor's and Cauchy's mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha + 1)}}} + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$
where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.