TY - JOUR T1 - A New $a$ $Posteriori$ Error Estimate for the Interior Penalty Discontinuous Galerkin Method AU - Yang , Wei AU - Cao , Luling AU - Huang , Yunqing AU - Cui , Jintao JO - International Journal of Numerical Analysis and Modeling VL - 2 SP - 210 EP - 224 PY - 2018 DA - 2018/10 SN - 16 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/12800.html KW - Interior penalty discontinuous Galerkin method, a posteriori error estimate, adaptive finite element methods, Gauss-Seidel iterative method. AB -
In this paper, we develop the adaptive interior penalty discontinuous Galerkin method based on a new $a$ $posteriori$ error estimate for the second-order elliptic boundary-value problems. The new $a$ $posteriori$ error estimate is motivated from the smoothing iteration of the $m$-time Gauss-Seidel iterative method, and it is used to construct the adaptive finite element method. The efficiency and robustness of the proposed adaptive method is demonstrated by extensive numerical experiments.