TY - JOUR T1 - Nonconforming FEMs for the $p$-Laplace Problem AU - Liu , D. J. AU - Li , A. Q. AU - Chen , Z. R. JO - Advances in Applied Mathematics and Mechanics VL - 6 SP - 1365 EP - 1383 PY - 2018 DA - 2018/09 SN - 10 DO - http://doi.org/10.4208/aamm.OA-2018-0117 UR - https://global-sci.org/intro/article_detail/aamm/12715.html KW - Adaptive finite element methods, nonconforming, $p$-Laplace problem, dual energy. AB -
The $p$-Laplace problems in topology optimization eventually lead to a degenerate convex minimization problem $E(v):= ∫_ΩW(∇v)dx − ∫_Ωf vdx$ for $v∈W^{1,p}_0(Ω)$ with unique minimizer $u$ and stress $σ := DW(∇u)$. This paper proposes the discrete Raviart-Thomas mixed finite element method (dRT-MFEM) and establishes its equivalence with the Crouzeix-Raviart nonconforming finite element method (CR-NCFEM). The sharper quasi-norm a priori and a posteriori error estimates of this two methods are presented. Numerical experiments are provided to verify the analysis.