TY - JOUR T1 - Approximation by Nörlund Means of Hexagonal Fourier Series AU - Ali Guven JO - Analysis in Theory and Applications VL - 4 SP - 384 EP - 400 PY - 2017 DA - 2017/11 SN - 33 DO - http://doi.org/10.4208/ata.2017.v33.n4.8 UR - https://global-sci.org/intro/article_detail/ata/10705.html KW - Hexagonal Fourier series, Hölder class, Nörlund mean. AB -

Let $f$ be an $H$−periodic Hölder continuous function of two real variables. The error $||f −N_n(p;f)||$ is estimated in the uniform norm and in the Hölder norm, where $p=(p_k)^∞_{k=0}$ is a nonincreasing sequence of positive numbers and $N_n(p; f)$ is the $n\rm{th}$ Nörlund mean of hexagonal Fourier series of $f$ with respect to $p=(p_k)^∞_{k=0}$.