TY - JOUR T1 - A Fixed-Point Proximity Approach to Solving the Support Vector Regression with the Group Lasso Regularization AU - Li , Zheng AU - Song , Guohui AU - Xu , Yuesheng JO - International Journal of Numerical Analysis and Modeling VL - 1-2 SP - 154 EP - 169 PY - 2018 DA - 2018/01 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/10561.html KW - Two-step fixed-point algorithm, proximity operator, group lasso, support vector machine, ADMM. AB -
We introduce an optimization model of the support vector regression with the group lasso regularization and develop a class of efficient two-step fixed-point proximity algorithms to solve it numerically. To overcome the difficulty brought by the non-differentiability of the group lasso regularization term and the loss function in the proposed model, we characterize its solutions as fixed-points of a nonlinear map defined in terms of the proximity operators of the functions appearing in the objective function of the model. We then propose a class of two-step fixed-point algorithms to solve numerically the optimization problem based on the fixed-point equation. We establish convergence results of the proposed algorithms. Numerical experiments with both synthetic data and real-world benchmark data are presented to demonstrate the advantages of the proposed model and algorithms.