TY - JOUR T1 - $\mathcal{H}$-Stability of Runge-Kutta Methods with Variable Stepsize for System of Pantograph Equations AU - Xu , Yang AU - Zhao , Jingjun AU - Liu , Mingzhu JO - Journal of Computational Mathematics VL - 5 SP - 727 EP - 734 PY - 2004 DA - 2004/10 SN - 22 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/10299.html KW - Delay differential equations, Stability, Runge-Kutta method. AB -
This paper deals with $\mathcal{H}$-stability of Runge-Kutta methods with variable stepsize for the system of pantograph equations. It is shown that both Runge-Kutta methods with nonsingular matrix coefficient $A$ and stiffly accurate Runge-Kutta methods are $\mathcal{H}$-stable if and only if the modulus of stability function at infinity is less than 1.