@Article{JPDE-10-65, author = {Minchun Hong }, title = {Regularity Results for Minimizers of Certain Functional Having Nonquadratic Growth with Obstacles}, journal = {Journal of Partial Differential Equations}, year = {1997}, volume = {10}, number = {1}, pages = {65--84}, abstract = { We prove partial regularity for minimizers of degenerate variational integrals ∫_Ω F(x, u, Du)dx with obstacles of either the form (i) μ_f = {u ∈ H^{1,m} (Ω,\mathbb{R}^N)|u^N ≥ f_1(u¹, ... ,u^{N-1}) + f_2(x) a.e.} or (ii) μ_N = {u ∈ H^{1,m}(Ω,\mathbb{R}^N)|u^i(x) ≥ h^i(x), a.e.; i=1, ... ,N} The typical mode of variational integrals is given by ∫_Ω [a^{αβ}(x, u)b_{ij}(x, u)D_αu^i D_βu^i]^{\frac{m}{2}}dx, m ≥ 2}, issn = {2079-732X}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jpde/5582.html} }