@Article{JCM-43-641, author = {Chen , FangLi , Meng and Zhao , Yanmin}, title = {Crank-Nicolson Galerkin Approximations for Logarithmic Klein-Gordon Equation}, journal = {Journal of Computational Mathematics}, year = {2024}, volume = {43}, number = {3}, pages = {641--672}, abstract = {
This paper presents three regularized models for the logarithmic Klein-Gordon equation. By using a modified Crank-Nicolson method in time and the Galerkin finite element method (FEM) in space, a fully implicit energy-conservative numerical scheme is constructed for the local energy regularized model that is regarded as the best one among the three regularized models. Then, the cut-off function technique and the time-space error splitting technique are innovatively combined to rigorously analyze the unconditionally optimal and high-accuracy convergence results of the numerical scheme without any coupling condition between the temporal step size and the spatial mesh width. The theoretical framework is uniform for the other two regularized models. Finally, numerical experiments are provided to verify our theoretical results. The analytical techniques in this work are not limited in the FEM, and can be directly extended into other numerical methods. More importantly, this work closes the gap for the unconditional error/stability analysis of the numerical methods for the logarithmic systems in higher dimensional spaces.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2312-m2023-0185}, url = {http://global-sci.org/intro/article_detail/jcm/23553.html} }