@Article{CiCP-31-516, author = {Zhou , Li and Li , Yunzhang}, title = {An LDG Method for Stochastic Cahn-Hilliard Type Equation Driven by General Multiplicative Noise Involving Second-Order Derivative}, journal = {Communications in Computational Physics}, year = {2022}, volume = {31}, number = {2}, pages = {516--547}, abstract = {
In this paper, we propose a local discontinuous Galerkin (LDG) method for the multi-dimensional stochastic Cahn-Hilliard type equation in a general form, which involves second-order derivative $∆u$ in the multiplicative noise. The stability of our scheme is proved for arbitrary polygonal domain with triangular meshes. We get the sub-optimal error estimate $\mathbb{O}(h^k)$ if the Cartesian meshes with $Q^k$ elements are used. Numerical examples are given to display the performance of the LDG method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0134}, url = {http://global-sci.org/intro/article_detail/cicp/20214.html} }