@Article{JCM-36-845, author = {Wang , Zhoufeng and Huang , Peiqi}, title = {An Adaptive Finite Element Method for the Wave Scattering by a Periodic Chiral Structure}, journal = {Journal of Computational Mathematics}, year = {2018}, volume = {36}, number = {6}, pages = {845--865}, abstract = {
The electromagnetic wave propagation in the chiral medium is governed by Maxwell's equations together with the Drude-Born-Fedorov (constitutive) equations. The problem is simplified to a two-dimensional scattering problem, and is formulated in a bounded domain by introducing two pairs of transparent boundary conditions. An a posteriori error estimate associated with the truncation of the nonlocal boundary operators is established. Based on the a posteriori error control, a finite element adaptive strategy is presented for computing the diffraction problem. The truncation parameter is determined through sharp a posteriori error estimate. Numerical experiments are included to illustrate the robustness and effectiveness of our error estimate and the proposed adaptive algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1705-m2017-0009}, url = {http://global-sci.org/intro/article_detail/jcm/12605.html} }