@Article{CiCP-24-885, author = {Mahaud , MorganeZhai , ZengqiangPerez , MichelLame , OlivierFusco , ClaudioChazeau , LaurentMakke , AliMarque , Grégory and Morthomas , Julien}, title = {Computational Software: Polymer Chain Generation for Coarse-Grained Models Using Radical-Like Polymerization}, journal = {Communications in Computational Physics}, year = {2018}, volume = {24}, number = {3}, pages = {885--898}, abstract = {
This paper presents major improvements in the efficiency of the so-called Radical-Like Polymerization (RLP) algorithm proposed in "Polymer chain generation for coarse-grained models using radical-like polymerization" [J. Chem. Phys. 128(2008)]. Three enhancements are detailed in this paper: (1) the capture radius of a radical is enlarged to increase the probability of finding a neighboring monomer; (2) between each growth step, equilibration is now performed with increasing the relaxation time depending on the actual chain size; (3) the RLP algorithm is now fully parallelized and proposed as a "fix" within the "Lammps" molecular dynamics simulation suite.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0146}, url = {http://global-sci.org/intro/article_detail/cicp/12285.html} }