@Article{JCM-35-383, author = {Zeng , Jinshan and Yin , Wotao}, title = {ExtraPush for Convex Smooth Decentralized Optimization over Directed Networks}, journal = {Journal of Computational Mathematics}, year = {2017}, volume = {35}, number = {4}, pages = {383--396}, abstract = {
In this note, we extend the algorithms Extra [13] and subgradient-push [10] to a new algorithm ExtraPush for consensus optimization with convex differentiable objective functions over a directed network. When the stationary distribution of the network can be computed in advance, we propose a simplified algorithm called Normalized ExtraPush. Just like Extra, both ExtraPush and Normalized ExtraPush can iterate with a fixed step size. But unlike Extra, they can take a column-stochastic mixing matrix, which is not necessarily doubly stochastic. Therefore, they remove the undirected-network restriction of Extra. Subgradient-push, while also works for directed networks, is slower on the same type of problem because it must use a sequence of diminishing step sizes.
We present preliminary analysis for ExtraPush under a bounded sequence assumption. For Normalized ExtraPush, we show that it naturally produces a bounded, linearly convergent sequence provided that the objective function is strongly convex.
In our numerical experiments, ExtraPush and Normalized ExtraPush performed similarly well. They are significantly faster than subgradient-push, even when we hand-optimize the step sizes for the latter.